UNIDAD 3

UNIDAD3

MOTORES ELECTRICOS


Un motor eléctrico es una maquina elecrica  que transforma energia electrica en energia mecanica por medio de campos magnéticos variables electromagneticas. Algunos de los motores eléctricos son reversibles, pueden transformar energía mecánica en energía eléctrica funcionando como generadores Los motores eléctricos de tracción usados en locomotoras realizan a menudo ambas tareas, si se los equipa con frenos regenerativos
Son ampliamente utilizados en instalaciones industriales, comerciales y particulares. Pueden funcionar conectados a una red de suministro electrico o a baterias. Así, en automoviles se están empezando a utilizar en vehiculos hibridos  para aprovechar las ventajas de ambos.

Principio de funcionamiento

Los motores de corriente alterna y los de corriente continua se basan en el mismo principio de funcionamiento, el cual establece que si un conductor por el que circula una corriente electrica se encuentra dentro de la acción de un campo magnetico éste tiende a desplazarse perpendicularmente a las líneas de acción del campo magnetico
El conductor tiende a funcionar como un electroima debido a la corriente electrica  que circula por el mismo adquiriendo de esta manera propiedades magnéticas, que provocan, debido a la interacción con los polos ubicados en el estator, el movimiento circular que se observa en el rotor del motor. Aprovechando el estator y rotor ambos de acero laminado al silicio se produce un campo magnético uniforme en el motor.
Partiendo del hecho de que cuando pasa corriente por un conductor produce un campo  magnetico , además si lo ponemos dentro de la acción de un campo magnetico potente, el producto de la interacción de ambos campos magnéticos hace que el conductor tienda a desplazarse produciendo así la energía mecánica. Dicha energia  es comunicada al exterior mediante un dispositivo llamado flecha.

Ventajas
En diversas circunstancias presenta muchas ventajas respecto a los motores de combustion:
  • A igual potencia , su tamaño y peso son más reducidos.
  • Se pueden construir de cualquier tamaño.
  • Tiene un par de giro elevado y, según el tipo de motor, prácticamente constante.
  • Su rendimiento es muy elevado (típicamente en torno al 75%, aumentando el mismo a medida que se incrementa la potencia de la máquina).
  • Este tipo de motores no emite contaminantes, aunque en la generacion de energia electrica de la mayoría de las redes de suministro sí emiten contaminantes.
Motores de corriente continua



Diversos motores eléctricos.
Los motores de corriente continua se clasifican según la forma como estén conectados, en:


Motor paso a paso
Servomotor
Motor sin nucleo 

Motores de corriente alterna

Los motores de C.A. se clasifican de la siguiente manera:


Asíncrono o de inducción
Los motores asíncronos o de inducción son aquellos motores eléctricos en los que el rotor nunca llega a girar en la misma frecuencia con la que lo hace el campo magnético del estator. Cuanto mayor es el par motor mayor es esta diferencia de frecuencias.

Jaula de ardilla
Un rotor de jaula de ardilla es la parte que rota usada comúnmente en un motor de inducción de corriente alterna. Un motor eléctrico con un rotor de jaula de ardilla también se llama "motor de jaula de ardilla". En su forma instalada, es un cilindro montado en un eje. Internamente contiene barras conductoras longitudinales de aluminio o de cobre con surcos y conectados juntos en ambos extremos poniendo en cortocircuito los anillos que forman la jaula. El nombre se deriva de la semejanza entre esta jaula de anillos y barras y la rueda de un hámster (ruedas probablemente similares existen para las ardillas domésticas)
Anteriormente se usaban rotores con barras conectadas entre si con tuercas lo que da problemas cuando perdían presión y provocan mal contacto. Eso se mejoro usando jaulas de ardilla sin tuercas, son de material fundido, en el futuro se pretende utilizar cobre en la jaula para mejorar la eficiencia, actualmente se utiliza aluminio.
Artículo principal:jaula de ardilla.

Monofásicos
  • Motor de arranque a resistencia. Posee dos bobinas una de arranque y una bobina de trabajo.
  • Motor de arranque a condensador. Posee un condensador electrolítico en serie con la bobina de arranque la cual proporciona más fuerza al momento de la marcha y se puede colocar otra en paralelo la cual mejora la reactancia del motor permitiendo que entregue toda la potencia.
  • Motor de marcha.
  • Motor de doble condensador.
  • Motor de polos sombreados o polo sombra.
Trifásicos
  • Motor de Inducción.
A tres fases
La mayoría de los motores trifásicos tienen una carga equilibrada, es decir, consumen lo mismo en las tres fases, ya estén conectados en estrella o en triángulo. Las tensiones en cada fase en este caso son iguales al resultado de dividir la tensión de línea por raíz de tres. Por ejemplo, si la tensión de línea es 380 V, entonces la tensión de cada fase es 220 V.



Rotor Devanado
El rotor devanado o bobinado, como su nombre lo indica, lleva unas bobinas que se conectan a unos anillos deslizantes colocados en el eje; por medio de unas escobillas se conecta el rotor a unas resistencias que se pueden variar hasta poner el rotor en corto circuito al igual que el eje de jaula de ardilla.

Monofásicos
  • Motor universal
  • Motor de Inducción
  • Motor de fase partida
  • Motor por reluctancia
  • Motor de polos sombreados
Trifásico
  • Motor de rotor devanado.
  • Motor asíncrono
  • Motor síncrono

Seleccion de velocidades nominales de los motores  de induccion jaula de ardilla  o de rotor devanado.

Dado que el deslizamiento de la mayor parte de los motores comerciales de inducción de jaula de ardilla, a la velocidad nominal en general de alrededor de un 5% , no se pueden alcanzar velocidades mayores a 3600 r.p.m. A 60 Hz, las velocidades son muy múltiplos de los inversos del números de polos en el estator: 1800, 1200, 900, 720 r.p.m. Etc. En general, se prefieren los motores de alta velocidad a los de baja velocidad, de la misma potencia y voltaje, debido a que:
  • Son de tamaño menor y en consecuencia de menor peso
  • Tienen mayor par de arranque
  • Tienen mayores eficiencias
  • A la carga nominal, tienen mayores factores de potencia
  • Son menos costosos.
Por estas razones se suele dotar de cajas de engranes o embrague a los motores de inducción de jaula de ardilla para permitir velocidades de eje de cerca sobre 3600 r.p.m. y por debajo de 200 r.p.m. En muchos usos o aplicaciones comerciales particularmente en capacidades de menor potencia, la caja de engranes o de embrague va incorporada en la caja del motor, formando unidad integral con este.

Efecto de la variacion de voltaje sobre la velocidad 

Si solo hacemos variar el voltaje del estator no se produce una variación correspondiente en el deslizamiento y la velocidad. Entonces si los demás factores permanecen constantes, el par del motor es directamente proporcional al cuadrado del voltaje. Esto significa que si se aumenta el voltaje en el estator, se produce un aumento mucho mayor en el par y, correspondientemente, una reducción en el desplazamiento, es decir el deslizamiento varía inversamente con el cuadrado del voltaje o en proporción al inverso del par.
Para fines de calculo , podemos resumir la relación entre par y voltaje de estator como sigue:
En el cual el subíndice "n" representa el nuevo valor
El subíndice "o" representa el valor original.

Características de funcionamiento del motor de inducción.

Suponiendo que el motor de inducción comercial de jaula de ardilla se haga arrancar con voltaje nominal en las terminales de línea de su estator (arranque a través de la línea) desarrollará un par de arranque de acuerdo a la ecuación 1 que hará que aumente su velocidad. Al aumentar su velocidad a partir del reposo (100% de deslizamiento), disminuye su deslizamiento y su par velocidad aumente todavía más reduciéndose en forma simultánea el deslizamiento y el par que desarrolle el par de inducción.
Los pares desarrollados al arranque y al valor de deslizamiento que produce el par máximo ambos exceden al par aplicado a la carga. Por lo tanto la velocidad del motor aumentará, hasta que el valor del deslizamiento sea tan pequeño que el par que se desarrolla se reduzca a un valor igual al par aplicado por la carga. Mientras tanto el motor continuará trabajando a esta velocidad y valor de equilibrio del deslizamiento hasta que aumente o disminuya el par aplicado de acuerdo con la ecuación 1.
La siguiente gráfica resume el funcionamiento de un motor polifásico de inducción.
Muestra la relación entre los pares de arranque, máximo y nominal a plena carga que desarrolla un motor de inducción, como funcion  de la velocidad de este y del desplazamiento. Esta figura es representación gráfica de la corriente y el par desarrollados en el rotor del motor como funciones de deslizamiento desde el instante de arranque (punto a ) hasta la condición de funcionamiento en estado estable (en general entre marcha en vacío y marcha a plena carga puntos c y d ) cuando los pares desarrollados y aplicado son iguales.

Características de funcionamiento normal del motor de inducción en marcha 

Las características de funcionamiento normal del motor se tiene en la gráfica en los puntos. Enseguida vemos el comportamiento del rotor de un motor de inducción de jaula de ardilla a una velocidad sin carga, ligeramente menor que la velocidad síncrona cuando se aplica una carga que va en aumento.
Caso sin carga y vacío:
Sin carga, el deslizamiento es muy pequeño y la frecuencia, reactancia del rotor, y la FEM inducida en éste son muy pequeñas. Por lo tanto la corriente en el rotor es muy pequeña y solo la suficiente para producir el par sin carga y por lo tanto la corriente en el estator es la suma fasorial de su corriente de excitación y un componente de carga primario inducido en el rotor por acción del transformador.

Arranque en estrella - delta

La mayor parte de los motores polifásicos se devanan con sus estatores conectados en delta. Existen fabricantes que ofrecen motores de inducción con el principio y el final de cada devanado de fase en forma saliente, con fines de conexión externa. En el caso de motores trifásicos se pueden conectar a la línea ya se ha en estrella o en delta cuando se conectan en estrella, el voltaje que se imprime al devanado es 1/ 3, (57.8%) del voltaje de línea.
Por tanto mediante la conmutación como la que se muestra en la figura:
Es posible arrancar un motor con poco más de la mitad de su voltaje nominal y a continuación hacerlo trabajar en delta, con el voltaje nominal de línea y fase aplicados. como el par varía de acuerdo con el cuadrado del voltaje impreso al estator la reducción del voltaje cuando se conecta en estrella producirá aproximadamente la tercera parte del par de arranque a pleno voltaje.
La conmutación de estrella a delta se debe hacer tan rápidamente como sea posible para eliminar grandes corrientes transitorias debidas a la pérdida momentánea de potencia. Por este motivo, se emplean interruptores de tres polos doble tiro con tensión de resorte y acción instantánea, en lugar de interruptores de cuchillas.




No hay comentarios:

Publicar un comentario